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We study the fidelity approach to quantum phase transitions �QPTs� and apply it to general thermal phase
transitions �PTs�. We analyze two particular cases: The Stoner-Hubbard itinerant electron model of magnetism
and the BCS theory of superconductivity. In both cases we show that the sudden drop of the mixed state fidelity
marks the line of the phase transition. We conduct a detailed analysis of the general case of systems given by
mutually commuting Hamiltonians, where the nonanalyticity of the fidelity is directly related to the nonana-
lyticity of the relevant response functions �susceptibility and heat capacity�, for the case of symmetry-breaking
transitions. Further, on the case of BCS theory of superconductivity, given by mutually noncommuting Hamil-
tonians, we analyze the structure of the system’s eigenvectors in the vicinity of the line of the phase transition
showing that their sudden change is quantified by the emergence of a generically nontrivial Uhlmann mixed
state geometric phase.
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One of the main characteristics of quantum mechanics
that makes it different from any classical physical theory is
that in quantum mechanics two different quantum states, be-
ing either pure or mixed, are in general not fully distinguish-
able. By fully distinguishable we mean that it is possible,
upon a result of a single-shot measurement of a suitable ob-
servable, to infer with probability one in which of the two
given quantum states the observed system has been prepared.
In particular, two pure quantum states are fully distinguish-
able if and only if they are orthogonal to each other. Other-
wise, the maximal probability to unambiguously distinguish
between two nonorthogonal pure quantum states is always
strictly smaller than one. The reason for this lies in the fact
that, while the outcomes of measurements on classical sys-
tems are, at least in principle, given with certainty, quantum
measurements in general generate nontrivial probability dis-
tributions. This feature of quantum mechanics has found nu-
merous applications within the field of quantum information
and computation, in particular in quantum cryptography,
quantum communication complexity, designing novel quan-
tum algorithms, etc. �for an overview, see �1��.

Within the field of quantum information, the function
widely used to quantify the distinguishability between two
quantum states �̂1 and �̂2 is fidelity �2�, given by the expres-
sion

F��̂1, �̂2� = Tr���̂1�̂2
��̂1. �1�

Note that in the case of pure states �̂1= ��1���1� and �̂2

= ��2���2�, the above expression reduces to F���1���1 � , ��2�
���2 � �= ���1 ��2��, which is nothing but the square root of
the probability for a system in state ��2� to pass the test of
being in state ��1�. The fidelity �1� between two quantum
states, given for two systems 1 and 2, quantifies the statisti-
cal distinguishability between them, in a sense of classical

statistical distinguishability between the probability distribu-
tions obtained by measuring an optimal observable in states

�̂1 and �̂2. In other words, for every observable Â, we have

F��̂1 , �̂2��Fc�	p1�i � Â�
 , 	p2�i � Â�
���i
�p1�i � Â�p2�i � Â�,

where 	p��i � Â�
, �� 	1,2
, is a probability distribution ob-

tained measuring the observable Â in the state �̂�, and

Fc�	p1�i � Â�
 , 	p2�i � Â�
� is the classical fidelity between the

two probability distributions 	p1�i � Â�
 and 	p2�i � Â�
. For an
overview of the results on distinguishability between quan-
tum states and its applications to the field of quantum infor-
mation, see �3� and the references therein.

Quantum mechanics was originally developed to describe
the behavior of microscopic systems. Therefore, most of its
applications are focused on the study of the properties and
dynamics of quantum states referring to such systems, where
quantum features dominate. On the other hand, it is a com-
mon assumption that classical behavior emerges in the ther-
modynamical limit, when the number of degrees of freedom
of the system becomes large �in the limit of a large number
of microscopic subsystems�. Yet, there is no special objection
why quantum mechanics should not be generally applicable,
even to macroscopic systems. Indeed, macroscopic phenom-
ena such as magnetism, superconductivity or superfluidity, to
name just a few, can only be explained by using the rules of
quantum mechanics. As in these, as well as in many other,
highly physical relevant cases, the macroscopic features of
matter are given through the features of its quantum states,
the question of quantifying those macroscopic properties
given by many-body quantum states arises as a relevant
problem in physics.

In this study, we are interested in those macroscopic fea-
tures of matter that define its thermodynamical phase. Dif-
ferent phases of matter are separated by the so-called regions
of criticality, regions in parameter space where the system’s
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free energy becomes nonanalytic. As the free energy is a
function of the system’s states, it is precisely the features of
its states that determine the phase the system is in. Indeed,
different phases have different values of the order param-
eter, given by the expectation value of a certain observable.
As in the case of general quantum states, here as well, fidel-
ity can be used as a function whose behavior can mark the
regions of criticality �and therefore the phase transitions�.

In the case of quantum phase transitions �QPTs� �4�,
which occur at zero temperature and are driven by purely
quantum fluctuations, the study of the ground state fidelity
has been first conducted on the examples of the Dicke and
XY models �5�. Note that in this case, the ground states are
pure quantum states, so the fidelity is given by a simple
overlap between two pure states. It was shown that approach-
ing the regions of criticality the fidelity between two neigh-
boring ground states exhibits a dramatic drop �26�. Subse-
quently, the fidelity approach to QPTs was applied to free
Fermi systems and graphs �6� and to the Bose-Hubbard
model �7�. The connection between fidelity, scaling behavior
in QPTs and the renormalization group flows was introduced
in �8� and further discussed in �9�. Also, it was shown that
the fidelity can mark the regions of criticality in systems
whose QPTs cannot be described in terms of Landau-
Ginzburg-Wilson �LGW� theory: When the ground states are
given by the matrix product states �10�, in the case of a
topologically ordered QPT �11�, and in the Kosterlitz-
Thouless type of transition �12� as well. The formal
differential-geometry description of the fidelity approach to
QPTs was first introduced in �13� and subsequently devel-
oped in �14�, where the connection to the Berry phase ap-
proach to QPTs �see �15�� was also established. Further, on
the example of the spin one-half XXZ Heisenberg chain, it
was shown that the fidelity does not necessarily exhibit a
dramatic drop at the critical point, but that the proper finite-
size scaling analysis allows for correct identification of the
QPT; see �14�. An interesting example of a Heisenberg chain
where the fidelity approach fails when applied to the ground
states, but does mark the point of criticality when applied to
the first excited states, was discussed in �16� �note that the
numerical results were obtained for up to 12 spins only,
which leaves open the question of the ground state fidelity
behavior in the thermodynamic limit�. Introducing the tem-
perature as an additional parameter, QPTs were studied in
�17� and it was shown that extending the fidelity approach to
general mixed �thermal� states can still mark the regions of
criticality as well as the cross-over regions at finite tempera-
tures. Finally, the genuine thermal PTs were discussed in
�13� and �18�, where the connection between the singularities
in fidelity and specific heat or magnetic susceptibility was
explicitly shown for the cases of systems given by mutually
commuting Hamiltonians and symmetry-breaking PTs of
LGW type.

In this paper, we apply the fidelity approach to general
thermal phase transitions �27�. We analyze in detail two
particular examples given by the Stoner-Hubbard model for
magnetism and the BCS theory of superconductivity. In

general, a system is defined by a Hamiltonian Ĥ�U� which is
a function of a set of parameters representing the interaction
coupling constants generically denoted as U. In thermal equi-
librium, a system’s state is given by a density operator
�̂�T ,U�. Thus, in discussing the general, thermal as well as
quantum phase transitions, we can consider the coupling
constant�s� U and the temperature T to form a “generalized”
parameter q= �T ,U�. We consider the behavior of the fidelity
F��̂�q� , �̂�q̃�� between two equilibrium thermal states �̂�q�
and �̂�q̃� defined by two close parameter points q=q�T ,U�
and q̃=q+�q= �T+�T ,U+�U�. We show that in both models
considered, the PTs are marked by the sudden drop of fidelity
in the vicinity of regions of criticality—a signature of en-
hanced distinguishability between two quantum states defin-
ing two different phases of matter, based on both short-range
microscopic as well as long-range macroscopic features. For
the general case of mutually commuting Hamiltonians, we
analytically prove in detail that the same holds for PTs which
fall within the symmetry-breaking paradigm described by the
LGW theory �see also �13� and �18��. Further, for the case of
mutually noncommuting Hamiltonians, on the example of
BCS theory of superconductivity we show that the nonana-
lyticity of the fidelity is accompanied by the emergence of a
generically nontrivial Uhlmann geometric phase �19�, the
mixed-state generalization of the Berry geometric phase �for
the relation between QPTs and Berry phases, see �15�, �13�,
and �14��.

I. STONER-HUBBARD ITINERANT ELECTRON
MODEL FOR MAGNETISM

First, we discuss the case of the Stoner-Hubbard model
for itinerant electrons on a lattice given by the Hamiltonian
�20�:

ĤSH = �
k

�k�ĉk↑
† ĉk↑ + ĉk↓

† ĉk↓� + U�
l

ĉl↑
† ĉl↑ĉl↓

† ĉl↓. �2�

The anticommuting fermionic operators ĉk	
† represent the

free-electron momentum Bloch modes �	� 	↑ , ↓ 
�, while the
on-site operators ĉl	

† =V−1/2�ke
−ikxlĉk	

† are given by their Fou-
rier transforms, where xl represents the position of the lth
lattice site. The coupling constant U
0 defines the on-site
electron Coulomb repulsion. There are in total N electrons
and they occupy the volume V �such that in the thermody-
namic limit, when N ,V→�, we have N /V→const�. Finally,
we assume for simplicity that the kinetic energy is given by
�k=�2k2 / �2m�, while the number operators are n̂k	= ĉk	

† ĉk	

and n̂l	= ĉl	
† ĉl	=V−1�qke

iqxlĉk	
† ĉk+q	. Thus

ĤSH = �
k	

�kn̂k	 + U�
l

n̂l↑n̂l↓. �3�

In order to obtain the mean-field effective Hamiltonian,
we neglect the term quadratic in the fluctuations �n̂l	= n̂l	
−nl	, where nl	= �n̂l	�, in the potential written as n̂l↑n̂l↓
=�n̂l↑�n̂l↓+nl↑n̂l↓+nl↓n̂l↑−nl↑nl↓. Expressing the number op-
erators in terms of the Bloch momentum operators, and using
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�ĉk	
† ĉk�	�=�kk��n̂k	� �which expresses the translational invari-

ance in a ferromagnetic ground state�, the mean-field linear-
ized effective Hamiltonian becomes

ĤSH
eff = �

k

�Ek↑n̂k↑ + Ek↓n̂k↓� − VUn↑n↓. �4�

Here, n	=N	 /V is the density of electrons with spin projec-
tion along z axis given by 	� 	↑ , ↓ 
 �N	=�k�n̂k	� being the
total number of electrons with spin 	�. The one-particle elec-
tron energies in this effective model are obtained by shifting
the free-electron energies �k by an amount depending on the
particle’s spin:

Ek↑ = �k + Un↓,

Ek↓ = �k + Un↑. �5�

Since the one-particle energy modes are decoupled, the over-
all ground state is obtained by filling the electrons up to the
Fermi level �F:

�g� = �k�kF↑
ĉk↑

†
�k�kF↓

ĉk↓
† �0� , �6�

where �0� represents the vacuum state with no electrons and
kF↑ the maximal value of the momentum for spin up elec-
trons, given by EkF↑

=�F �and analogously for kF↓� �28�. Note
that, due to the different dispersion formulas �5� for particles
with spin up and spin down, in general the values of kF↑ and
kF↓ that minimize the ground state energy, and therefore de-
fine the state �6� itself, are different and consequently the
number of up and down electrons will be different. This is
precisely the reason for the existence of magnetism in this
model. As soon as the energy of the “biased” �magnetic�
state, for which for example kF↑
kF↓, becomes lower than
the energy of the “balanced” �paramagnetic� state �kF↑
=kF↓�, a magnetic phase transition will occur. Obviously, for
reasons of symmetry, the magnetic state can be reversed with
the kF↑
kF↓ and kF↑kF↓ cases having the same energy, in

the absence of an external symmetry breaking field H� . The
qualitative picture of the emergence of magnetic features can
be seen already from looking at the original Hamiltonian �2�:
In the U→0 limit, when the Coulomb interaction is negli-
gible, the Hamiltonian represents a system of free electrons
that exhibits no magnetic order �all Bloch states are doubly
occupied�; in the opposite U→� limit, the second term of
the Hamiltonian becomes the dominant one and is minimized
by one of two possible states for which either N↑=0 or N↓
=0.

The quantitative analysis of the zero-temperature critical
behavior of the effective Hamiltonian �4� can be done by
looking at the divergence of the magnetic susceptibility, us-
ing the one-particle energy dispersion relations �5�. At T=0 it
leads to the well known Stoner criterion for the emergence of
magnetism �20�:

DFUc = 1, �7�

where Uc is the critical value of the coupling constant above
which the system is in a magnetic phase and DF=D��F� is
the density of states around the Fermi energy. From this, one

can obtain �see Appendix A� the critical value Uc of the
coupling constant �29�:

Uc =
4

3
�F

V

N
, �8�

where N is the total number of electrons, V is the volume of
the system, and m is the electron mass.

Alternatively, the above result can be derived by minimiz-
ing the overall ground state energy, thus obtaining the ex-
plicit dependencies kF↑=kF↑�U� and kF↓=kF↓�U� which de-
termine the ground state �6� and Uc in particular �the
maximum value of U for which kF↑=kF↓� �30�. The total
number of electrons in the system is given by N=N↑+N↓,
and thus

N

V
=

1

6�2 ��kF↑�3 + �kF↓�3� , �9�

since the up and down electrons occupy spheres of radius kF↑
and kF↓, with volumes V�kF↑� and V�kF↓�, in momentum
space, with a density of states V / �2��3, as follows from the
periodic boundary conditions for the Bloch functions. From
EkF↑

=EkF↓
�see Appendix A�, using the energy dispersion for-

mulas �5�, we obtain the second equation that determines the
Fermi momenta kF↑ and kF↓ �with �= 3

2kFUc�:

�kF↑ − kF↓��kF↑ + kF↓� −
U

�
�kF↑

2 + kF↑kF↓ + kF↓
2 �� = 0.

�10�

We see that the above two equations always have the
trivial solution kF↑=kF↓�kF, which from Eq. �9� is kF
= �3�2�N /V��1/3. Yet, it is not necessarily the only possible
solution, as the quadratic term in Eq. �10� can also be satis-
fied: �kF↑+kF↓�− �U /���kF↑

2 +kF↑kF↓+kF↓
2 �=0. It turns out that

precisely for U
Uc this term has nontrivial, “nonbalanced”
solutions that are energetically more favorable than the “bal-
anced” one and that give rise to magnetic order �see Appen-
dix A�.

Thus Eqs. �9� and �10� define kF↑=kF↑�U� and kF↓
=kF↓�U� functions which, via Eq. �6�, give the ground state
as a function of the external parameter U, �g�= �g�U��. This
enables us to analyze the fidelity between two ground states
�g���g�U�� and �g̃�= �g�U+�U�� in two close parameter
points U and U+�U. The fidelity is then F��g��g � , �g̃��g̃ � �
= ��g � g̃��, and for UUc �and �U sufficiently small, i.e.,
�UUc−U� we see that the fidelity is identical to 1. This is
a simple consequence of our mean-field approximation based
on a simplified description in terms of single particle energy
states. On the magnetic side of the phase diagram, the
ground states are indeed different from each other, which
follows from the relation kF↑�U��kF↓�U�. In fact, from Eq.
�6� it follows that any two ground states with different num-
bers N↑ and N↓ are orthogonal to each other. Since this is
precisely the case in the thermodynamic limit, the fidelity
between any two different ground states �in two different
parameter points� is identically equal to zero. This is the
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famous Anderson orthogonality catastrophe, discussed in
more detail in �5�. For systems with infinitely many degrees
of freedom, such as those taken in the thermodynamic limit,
every two ground states are generally orthogonal to each
other. Therefore, in order to infer the points of criticality, we
are forced to either analyze the finite-size scaling behavior
�see �5��, or to introduce the fidelity per lattice site and work
directly in the thermodynamic limit �see �8�, �9�, and �21��.

In our case though, even for finite systems the ground
state is discontinuous at the point of criticality. This is due to
the fact that the unperturbed and the symmetry-breaking per-
turbation Hamiltonian commute with each other, which re-
sults in a first-order quantum phase transition at the point of
level-crossing between the ground and the first excited state.
In other words, in the case of finite systems �N ,V � �, the
small enough changes of the parameter U→U+�U will re-
sult in small changes of volumes V�kF↑�→V�kF↑�+�V�kF↑�
such that ��V�kF↑� � V0= �2��3 /V �V0 is the volume occu-
pied by each one-particle state in momentum space�: Infini-
tesimal changes of the volumes V�kF↑� and V�kF↓� are small
enough to cause a change in the numbers N↑ and N↓, and thus
in the ground state. Therefore, for finite systems, the fidelity
between two ground states is either one or zero—it is not a
continuous function and its rate of change cannot be ana-
lyzed directly.

Yet, we can use the rate of change of V�kF↑�, the deriva-
tive dV�kF↑� /dU, to quantify the change of fidelity itself
�note that, due to the fixed total number of electrons N, we
have that dV�kF↓� /dU=−dV�kF↑� /dU�. Lengthy, but elemen-
tary algebra �see Appendix A� shows that precisely at U

=Uc, the derivative
dV�kF↑�

dU diverges to infinity, thus marking
the macroscopic distinguishability between the states from
paramagnetic and magnetic phase �see Fig. 1�.

Next, we discuss the general case of T�0 phase transi-

tions. First, we transform the Hamiltonian ĤSH
eff to a form

with the explicit symmetry breaking term that drives the

phase transition. Using M = �N↑−N↓� /2= �Ŝz�=�k�Ŝk
z�, with

N	= �N̂	�=�k�n̂k	�, n̂k= n̂k↑+ n̂k↓, and Ŝk
z = 1

2 �n̂k↑− n̂k↓�
=�̂†�	z /2��̂, where �̂k

†= �ĉk↑
† ĉk↓

† � and 	z is the z component
of the vector 	� of Pauli matrices, we get

ĤSH
eff = �

k
��k +

UN

2V
�n̂k − 2

UM

V
Ŝk

z� −
U

V
�N2

4
− M2� .

�11�

In thermal equilibrium, the state of the system is given by

�̂= �1 /Z�e−��ĤSH
eff −�N̂�, where Z=Tr�e−��ĤSH

eff −�N̂�� is the grand
canonical partition function, �=1 / �kBT�, with kB being the
Boltzmann constant and T the absolute temperature and �
=��T� is the chemical potential. Using the above expression

for the Hamiltonian ĤSH
eff , we can write

− ��ĤSH
eff − �N̂� = �

k

��kn̂k + hzŜk
z� + C . �12�

Here, �k=−�Ek �with Ek= �̄k+UN /2V and �̄k=�k−��,
hz=2��U /V�M, and C=��U /V��N2 /4−M�. Note that the
coefficients �k, hz, and C are functions of both the coupling
constant U and, through � and the chemical potential �
=��T�, of the temperature T as well, so that the “general-
ized” parameter is q= �T ,U�. Using the obvious commutation

relations �n̂k , n̂k��= �n̂k , Ŝk�
z �= �Ŝk

z , Ŝk�
z �=0 �for k�k��, the

equilibrium state can be expressed as

�̂ =
1

Z
e−��ĤSH

eff −�N̂� =
e�k

��kn̂k+hzŜk
z�+C

Tr�e�k
��kn̂k+hzŜk

z�+C�
=

�k
�e�kn̂kehzŜk

z
�

�k
Tr�e�kn̂kehzŜk

z
�

.

�13�

We next choose two parameter points qa= �Ta ,Ua� and

qb= �Tb ,Ub� defining the Hamiltonians Ĥa= ĤSH
eff �Ua� and

Ĥb= ĤSH
eff �Ub� and the corresponding equilibrium states �̂a

= �̂�qa� and �̂b= �̂�qb�, respectively. The fidelity between the
two states is then given by

F��̂a, �̂b� = Tr���̂a
1/2�̂b�̂a

1/2�1/2� = Tr���̂a�̂b�

=
Tr�e��aĤa+�bĤb�/2�
�Z�Ĥa�Z�Ĥb�

. �14�

Using Eq. �13� and the expression Tr�e��kn̂k+hzŜk
z��

=2e�k�cosh �k+cosh�hz /2�� �for the proof, see Appendix B�,
the fidelity between two different equilibrium states �̂a and
�̂b finally becomes

1.00 1.05 1.10 1.15

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U

k

kF↑

kF↓

FIG. 1. �Color online� Explicit dependencies kF↑=kF↑�U� �solid
line� and kF↓=kF↓�U� �dashed line� determining the ground state
�6�. Note that at the point of QPT, given by Uc=1, the two deriva-
tives dkF↑ /dU and dkF↓ /dU become infinite, marking the nonana-
lyticity in the ground state fidelity. The plot is given in rescaled
quantities U→DFU and kF	→kF	 /kF.
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F��̂a, �̂b� = �
k

cosh �̄k + cosh
h̄z

2

�cosh��̄k +
��k

2
� + cosh� h̄z

2
+

�hz

2
��cosh��̄k −

��k

2
� + cosh� h̄z

2
−

�hz

2
�� , �15�

with �̄k= ��k�qa�+�k�qb�� /2, ��k=�k�qa�−�k�qb�, and simi-

larly for h̄z and �hz. If we choose the two points to be close
to each other, ��k�1 and �hz�1, then the fidelity can be

seen as a function of �̄k and h̄z, with a fixed parameter dif-
ference.

In order to evaluate the fidelity �15�, we need to determine
the magnetization M =M�T ,U� and the chemical potential
�=��T ,U�, given by the pair of self-consistent integral
equations:

N = VDF�
0

+�

d�� �

�F
�f�Ek↑� + f�Ek↓�� ,

M = VDF�
0

+�

d�� �

�F

1

2
�f�Ek↑� − f�Ek↓�� , �16�

where f�Ek	�= �exp��Ek	�+1�−1 is the usual Fermi distribu-
tion. We used the subroutine hybrd.f from MINPACK �22� to
solve the above system numerically. In the T→0 limit, the
above system reduces to Eqs. �9� and �10� that determine the
T=0 ground state. The result for the magnetization is given
in Fig. 2. The line of the phase transition Uc=Uc�T� is clearly
marked, and is plotted in Fig. 3. Finally, using the numerical
results for M and �, we obtain the fidelity, depicted in Fig. 4.
We clearly see the same line of the phase transition as the
line of a sudden drop of F. Note that all the plots are given in
rescaled quantities T→kBT, U→DFU, and M→M /N, with
�T=0 and �U=2�10−3. We have evaluated the fidelity for

�T=2�10−3 and �U=0, as well as for �T=�U=2�10−3

and the results are qualitatively the same.

II. GENERAL CASE OF MUTUALLY
COMMUTING HAMILTONIANS

The above singular behavior of the fidelity indeed marks
the regions of phase transitions, not only for the case of the
Stoner-Hubbard model but also for the broad class of sys-
tems given by a set of mutually commuting Hamiltonians

Ĥ�q� and whose critical behavior is explained by the LGW
theory, as can be seen by the following analysis. Using the

mean Hamiltonian H̄
ˆ

= �Ĥa+ Ĥb� /2 and the difference �Ĥ

= Ĥa− Ĥb, from Eq. �14� the fidelity can be written as

F��̂a, �̂b� =
Z�H̄ˆ �

�Z�H̄
ˆ

+
�Ĥ

2
�Z�H̄

ˆ
−

�Ĥ

2
� . �17�

Within the LGW theory, PTs occur as a consequence of the
emergence of a symmetry-breaking term in the Hamiltonian,

given by an operator Ŝ. Thus we can write the overall Hamil-
tonian as a sum of unperturbed and symmetry-breaking

T
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0.4U
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1.1

1.2

M

0.0

0.2

0.4

FIG. 2. �Color online� Magnetization M =M�T ,U� as a function
of the temperature T and the coupling constant U. The plot is given
in rescaled quantities T→kBT, U→DFU, and M→M /N.
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FIG. 3. Critical line of the magnetic phase transition Uc

=Uc�T�. The plot is given in rescaled quantities T→kBT and U
→DFU.
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terms, Ĥ= Ĥ0−hŜ, with h=h�q�. Using �31� Z�Ĥ�
=Tr�e−��Ĥ0−hŜ�� �note the implicit dependence of partition
function Z on temperature T, through ��, for the first and the

second derivative we obtain � ln Z /�h=� Tr��̂�Ĥ�Ŝ�=��Ŝ�
=�M and ��2 /�h2��ln Z�=��. Here, M =M�h� and �=��h�
=���Ŝ2�− �Ŝ�2� are the generalized “magnetization” and “sus-
ceptibility,” respectively. Thus, for the logarithm of the par-

tition function �free energy�, we obtain ln Z�Ĥ��h+�h

=ln Z�Ĥ��h+�M�h��h+ 1
2���h��h2+o��h2�. Finally, in the

vicinity of the points of parameter space where the self-
consistent field h vanishes, the fidelity �17� reads as

�F�h=�h � e−�1/2����0��h2
. �18�

According to the LGW theory, at the phase transition, the
zeroth-field “susceptibility” ��0� becomes nonanalytic and
diverges. Thus it follows that the fidelity F will itself become
nonanalytic and experience a sudden drop.

When interested in the system’s behavior at PTs, we usu-
ally simplify the problem by taking the unperturbed Hamil-
tonian to be constant. Yet, in general, the unperturbed Hamil-

tonian is also a function of the parameters, Ĥ0= Ĥ0�q�. This
gives the correction to the above formula for the fidelity

which, introducing H̄
ˆ

= H̄
ˆ

0− h̄Ŝ and �Ĥ=�Ĥ0−�hŜ, reads as

�F�h=�h �
Z�H̄ˆ 0�

Z�H̄
ˆ

0 +
�Ĥ0

2
�Z�H̄

ˆ
0 −

�Ĥ0

2
��1/2e−�1/2����0��h2

.

�19�

The “correction” term in the above product is responsible for
“short-range” local correlations, while the second one quan-
tifies the global “long-range” correlations giving rise to mac-
roscopic phase distinguishability. Note though that even
within a single phase, a system can be in different macro-
scopically distinguishable states—phase distinguishability is
not the only form of macroscopic distinguishability. Yet, it is

in some sense the “extreme” version of it, which clearly
affects the behavior of fidelity.

Finally, we note that in the above discussion we focused

on PTs driven by the local order parameter Ŝ. Therefore, we
analyzed the Taylor expansion of F with respect to �h de-
viations only, which at the second order are given by the
generalized susceptibility ��h�. In the general case, consid-
ering the temperature deviations as well, one would include
additional terms involving the specific heat C=C�q�, again
resulting in a singular behavior of the fidelity.

III. BCS SUPERCONDUCTIVITY

Next, we discuss the BCS theory for superconductivity
�20�, providing us with an example of a model with mutually
noncommuting Hamiltonians. The one-electron Bloch mo-
mentum modes are given by the fermionic anticommuting
operators ĉk	 �label 	� 	↑ , ↓ 
 represents spins with projec-
tions up and down along, say z axis�, with the one-particle
kinetic energies taken to be, again for simplicity, �k
=�2k2 / �2m�. The BCS superconducting Hamiltonian that
represents the sum of one-particle kinetic and Cooper-
pair interaction energies can be written in the following way
�Vk�k=Vkk�

* are the coupling constants�:

ĤBCS = �
k	

�kĉk	
† ĉk	 + �

kk�

Vkk�ĉk�↑
† ĉ−k�↓

† ĉ−k↓ĉk,↑. �20�

By n̂k	= ĉk	
† ĉk	 we denote the one-particle number operators,

while by b̂k
†= ĉk↑

† ĉ−k↓
† and b̂k= ĉ−k↓ĉk↑ we define the Cooper-

pair creation and annihilation operators, respectively. Analo-

gously to the previous case, using b̂k= �b̂k�+�b̂k and neglect-
ing the term quadratic in the fluctuations, we obtain the
effective mean-field BCS Hamiltonian:

ĤBCS
eff = �

k

�k�n̂k↑ + n̂−k↓� − �
k

��kb̂k
† + �k

*b̂k − �k
*bk� ,

�21�

with �k=−�k�Vkk�bk� and bk= �b̂k�. We will use the usual as-
sumption that the lattice-mediated pairing interaction is con-
stant and nonvanishing between electrons around the Fermi
level only, i.e., Vkk�=−V for ��̄k� and ��̄k� � ��D, and zero
otherwise ��D is the Debye frequency�. Using the Nambu

operators �20� T�̂ k= �̂k
†�	� /2��̂k, where �̂k

†= �ĉk↑
† ĉ−k↓� and 	� is

the vector of Pauli matrices �32�, the operators are given by

T̂k
+= b̂k

†, T̂k
−= b̂k and 2T̂k

0+1= �n̂k↑+ n̂−k↓� and form a su�2� al-
gebra �see Appendix C�. Using this notation, the Hamiltonian
takes the form

ĤBCS
eff = �

k

�2�kT̂k
0 − �kT̂k

+ − �k
*T̂k

−� + �
k

��k + �k
*bk� .

�22�

As before, the thermal equilibrium state is given by �̂

= �1 /Z�e−��ĤBCS
eff −�N̂� and, using the above expression for the

Hamiltonian ĤBCS
eff , we can write

T
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1.000

FIG. 4. �Color online� Fidelity F=F�T ,U�. The plot is given in
rescaled quantities T→kBT and U→DFU, with �T=0 and �U=2
�10−3.
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− ��ĤBCS
eff − �N̂� = �

k

h̃
�

kT�̂ k + K , �23�

where h̃
�

k= �h̃k
+ , h̃k

− , h̃k
0�= �2��k

* ,2��k ,−2��̄k�, T�̂ k

= �T̂k
+ , T̂k

− , T̂k
0�, K=−��k��̄k+�k

*bk�, and �̄k=�k−��T�. The

norms of the vectors h̃
�

k are given by h̃k=2�Ek, with Ek

=��̄k
2+ ��k�2. Similarly to what we had before, the coeffi-

cients h̃
�

k= h̃
�

k�T ,V� are functions of both the coupling con-
stant V and the temperature T, through the gap parameters
�k=�k�T ,V� and the chemical potential �=��T�. Thus we
can talk of the “generalized” parameter q= �T ,V�. Since

�T�̂ k ,T�̂ k��=0, for k�k�, we have

�̂ =
1

Z
e−��ĤBCS

eff −�N̂� =
e�kh̃

�
kT�̂k+K

Tr�e�kh̃
�

kT�̂k+K�

=
�k

eh̃
�

kT�̂k

�k
Tr�eh̃

�
kT�̂k�

. �24�

We wish to evaluate the fidelity between two thermal
states �̂a and �̂b, given for two different parameter points
qa= �Ta ,Va� and qb= �Tb ,Vb�. Using definition �1� and a�k

= h̃
�

k�qa� and b�k= h̃
�

k�qb�, we have

F��̂a, �̂b� = Tr���̂a
1/2�̂b�̂a

1/2�1/2�

=
Tr��k

e�a�k/2�T�̂keb�kT�̂ke�a�k/2�T�̂k�1/2�
�k

�Tr�ea�kT�̂k�Tr�eb�kT�̂k��1/2

. �25�

As for every k the operators T�̂ k form a su�2� algebra, and
therefore by exponentiation define a Lie group, we can write

e�a�k/2�T�̂keb�kT�̂ke�a�k/2�T�̂k =e2c�kT�̂k. Also �see Appendix C�, we have

that Tr�ea�kT�̂k�=2�1+cosh�ak /2��. Therefore, we finally have
�see Appendix C� that F��̂a , �̂b�=�kFk��̂a , �̂b� with �33�

Fk��̂a, �̂b� =
Tr�ec�kT�̂k�

�Tr�ea�kT�̂k�Tr�eb�kT�̂k�

=

1 +�1

2
�1 + cosh ck�

��1 + cosh
ak

2
��1 + cosh

bk

2
� , �26�

cosh ck = cosh��aEk
a�cosh��bEk

b�

��1 + tanh��aEk
a�tanh��bEk

b�

�
�̄k

a�̄k
b + Re��k

a��k
b�*�

Ek
aEk

b � . �27�

Here, we used the relation �̄k
a=�k

a−�a and ak=2�aEk
a, Ek

a

=���̄k
a�2+ ��k

a�2, so that cosh�ak /2�=cosh��aEk
a� �and analo-

gously for qb= �Vb ,Tb��. Note the explicit dependence of all
the quantities on the temperature and the coupling strength,
given through the superscripts a and b, denoting two param-
eter points qa= �Ta ,Va� and qb= �Tb ,Vb�.

Assuming that the chemical potential is also constant ��
=�F� in the region of interest, where the phase transition
takes place, the gap parameter reduces to �k=�, for ��̄ �
��D �and zero otherwise�. Thus the self-consistent equa-
tion for the gap �k=−�k�Vkk�	�1−2f�Ek��� /2Ek�
�k� reads as
�1−2f�Ek��=tanh��Ek� /2��

1 = DFV�
−��D

��D

d�

tanh
�

2
��2 + �2�T,V�

2��2 + �2�T,V�
, �28�

with f�E� being the Fermi distribution.
In the T→0 limit, we obtain the expression for the ground

state fidelity F��ga��ga � , �gb��gb � �= ��ga �gb��. At zero tempera-
ture, the chemical potential is equal to the Fermi energy �F,
��T=0�=�F. Further, the gap equation reduces to ��V�
=��D / �sinh�2 /DFV���2��D exp�−2 /DFV�, where DF is
the density of states around the Fermi level. The zero tem-
perature ground state fidelity is

F��ga��ga�, �gb��ga�� = �k

1
�2
�1 +

��k − �F�2 + ��Va���Vb�
���k − �F�2 + ��Va�2���k − �F�2 + ��Vb�2�1/2

,

which matches the expression one obtains for T=0. In
other words, we see that, as in the case of the Stoner-
Hubbard model, the point of criticality of the T=0 QPT
can be inferred from the mixed state fidelity between the
thermal states. The phase transition from superconduc-
tor to normal metal happens at V=0. Thus, for Va→0+

and Vb=Va+�V→�V
0, the fidelity between the corres-
ponding ground states of Fermi sea �gF� and the BCS
superconductor �gBCS� becomes ��gF �gBCS� � =�k�1 /�2��1
+ ��k−�F � /���k−�F�2+���V�2�1/2. We see that the BCS
model at T=0 features the Anderson orthogonality catastro-
phe, just as the Stoner-Hubbard model.
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As in the previous case, in obtaining the numerical results
for the fidelity, we used the subroutine hybrd.f from MINPACK

�22�. Again, all the numerical results are given in rescaled
quantities T→kBT / ���D�, V→DFV, and �→� / ���D�. The
result for the gap is given in Fig. 5. The line of the phase
transition is clearly marked as the line along which the gap
becomes nontrivial, and is presented in Fig. 6. Finally, the
fidelity, with �T=0 and �V=10−3, is plotted in Fig. 7. We
varied the parameter differences �T and �V, and all the re-
sults obtained show the same qualitative picture—the fidelity
exhibits a sudden drop from F=1 precisely along the line of
the phase transition.

As already discussed, in the case of mutually commuting
Hamiltonians, the fidelity reduces to the quantity

C��̂a, �̂b� =
Z�H̄ˆ �

�Z�H̄
ˆ

+
�Ĥ

2
�Z�H̄

ˆ
−

�Ĥ

2
� �29�

which, through relation �18�, establishes the connection be-
tween the singular behavior of the fidelity and the corre-
sponding susceptibility �or the heat capacity, etc.�. In the
noncommuting case, the same relation between C��̂a , �̂b� and
� is still valid �see Appendix D�, yet the fidelity is in general
not identically equal to C.

If we approach a line of the phase transition along a curve
q=q���, ��R, we find F=C�1+Fd�2�, where d� defines
the difference �q. For reasons of simplicity, we omit here the
explicit, lengthy expression for F. Although relatively com-
plicated and difficult to study directly, it is evident that, apart
from the Hamiltonian’s eigenvalues, it is also explicitly
given by the rate of change, with respect to �, of the Hamil-
tonian’s eigenbasis. This is also evident from the fact that for
the case of mutually commuting Hamiltonians, when the
eigenbasis is common, C�F and thus F�0. In the commut-
ing case, the change of state is given by the change of the
Hamiltonian’s eigenvalues only, while in the noncommuting
case, the overall change of state is given by the change of
both the eigenvalues and the eigenvectors. Thus, the singu-
larity of F can on its own mark the drastic change in the
structure of the system’s eigenbasis, thus bringing about the
finite difference between C and F. This is indeed the case for
BCS superconductors, where the difference C−F becomes
nontrivial precisely along the line of the phase transition,
where CF; see Fig. 8. We see that, as intuitively expected,
the state of a system exhibits an abrupt change in its structure
along the line of the phase transition both in terms of its
eigenvalues, as well as in terms of its eigenstates �for the
structural analysis of the system’s eigenstates given by a pa-

rametrized Hamiltonian Ĥ�q�, see for example �23,24��.
Another way to quantify the structural change of the

eigenvectors is through the Uhlmann connection and the cor-
responding mixed-state geometric phase �19�, the mixed-

T
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G
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FIG. 5. �Color online� Gap �=��T ,V� as a function of the tem-
perature T and the coupling constant V. The plot is given in rescaled
quantities T→kBT / ���D�, V→DFV, and �→� / ���D�.
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FIG. 6. Critical line Vc=Vc�T� as a function of the temperature
T. The plot is given in rescaled quantities T→kBT / ���D� and V
→DFV.
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FIG. 7. �Color online� Fidelity F=F�T ,V� as a function of the
temperature T and the coupling constant V. The plot is given in
rescaled quantities T→kBT / ���D� and V→DFV, with �T=0 and
�V=10−3.
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state generalization of the Berry connection and phase. The
fidelity F��̂a , �̂b�=Tr���̂a�̂b

��̂a can also be expressed as

F��̂a , �̂b�=Tr����̂a
��̂b � �, where �Â � = �ÂÂ†�1/2 represents the

modulus of the operator Â �see �25��. The Uhlmann parallel
transport condition �i.e., the connection� is given by the uni-

tary operator Ûab, such that F��̂a , �̂b�=Tr���̂a
��̂bÛab� �see

Eq. �9� from �25��. In other words, the connection operator
defining the parallel transport is the inverse of the unitary

V̂ab, given by the polar decomposition �1� ��̂a
��̂b

= ���̂a
��̂b � V̂ab, i.e., Ûab= V̂ab

† . Note that the parallel transport

condition �the connection�, given by Ûab, induces both the
local Uhlmann curvature two-form, as well as the global
mixed-state geometric phase �see Eqs. �11� and �12� from
�25��. Let us define

H��̂a, �̂b� = Tr���̂a
��̂b� . �30�

Obviously, in the case of mutually commuting Hamiltonians

H=F�=C� and the Uhlmann connection is trivial, Ûab= Î. In
the case of the BCS model, we have evaluated the quantity
H−F, and the result is qualitatively the same as for C−F. In
other words, along the line of the phase transition we have

found the strict inequality H−F=Tr����̂a
��̂b � �Ûab− Î��

const0. From the Cauchy-Schwarz inequality it follows

then that Ûab− Î�0, or Ûab� Î—a clearly abrupt change of

the connection operator Ûab occurs and it becomes nontrivial
in the vicinity of the line of the phase transition. Since the
two parameter points qa and qb are taken to be close to each
other, such a behavior implies the nonanalyticity of the local
Uhlmann curvature form along the line of the phase transi-
tion, which in turn results in generally nontrivial global Uhl-
mann mixed-state geometric phase �see, for example, the dis-
cussions in �13,14��. This can be seen as a mixed thermal
state generalization of recent results �15� on the relation be-
tween QPTs and Berry geometric phases. Further, we have
that along the line of the phase transition we have CH
F, while C�H�F�1 otherwise.

IV. CONCLUSION

In this paper we analyzed the fidelity approach to both
zero temperature �quantum� as well as finite temperature
phase transitions. It is based on the notion of quantum state
distinguishability, applied to the case of macroscopic many-
body systems whose states determine the global order of the
system and its phase. We focused on the two particular cases
of the Stoner-Hubbard model for itinerant electron magne-
tism and the BCS theory of superconductivity, as representa-
tives of two distinct classes of physical systems: Those de-
fined by a set of mutually commuting Hamiltonians and
those defined by mutually noncommuting Hamiltonians, with
respect to a given parameter space. We found that in both
cases the fidelity can mark the regions of PTs by its sudden
drop in the vicinity of the transition line. We discussed in
detail the general case of mutually commuting Hamiltonians,
where in the case of symmetry-breaking LGW type of tran-
sitions the nonanalyticity of fidelity is a direct consequence
of the nonanalyticity of the corresponding “generalized” sus-
ceptibility. The case of mutually noncommuting Hamilto-
nians is more complex as there the structure of the Hamilto-
nian’s eigenvectors directly affects the system’s thermal state
thus introducing a feature relevant for the macroscopic phase
distinguishability. On the example of the BCS superconduc-
tivity we showed that the phase transition is accompanied by
the abrupt change of the Hamiltonian’s eigenvectors, quanti-
fied by the differences C−F and H−F. The second one is of
particular interest as it determines the Uhlmann connection
and the associated mixed-state geometric phase, which ge-
nerically becomes nontrivial in the vicinity of the phase tran-
sition only—a mixed state generalization of the emergence
of nontrivial Berry geometric phase in the vicinity of criti-
cality for QPTs.

There are two main extensions of this work. First, the
study of more general phase transitions that fall outside the
standard symmetry-breaking LGW paradigm. Second, the
general study of the structural analysis of the system’s eigen-
states in the case of mutually noncommuting Hamiltonians,
given within the framework of the mixed state fidelity and
the Uhlmann geometric phase.
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APPENDIX A

In this appendix we prove various technical statements
relevant for the analysis of the ground state fidelity in the
Stoner-Hubbard model.

1. Proving the relation �F= �̃kF_
= �̃kF`

Using N	=�0
N	dN	, the ground state energy can be written

as
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0.10V

0.0
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0.4
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F

−0.01

0.00

FIG. 8. �Color online� Difference C�T ,V�−F�T ,V� as a function
of the temperature T and the coupling constant V. The plot is given
in rescaled quantities T→kBT / ���D� and V→DFV, with �T=0 and
�V=10−3.
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Eg = �
0

N↑
Ek↑dN↑ + �

0

N↓
Ek↓dN↓ − U

N↑N↓
V

= �
0

N↑
�kdN↑ + �

0

N↓
�kdN↓ + U

N↑N↓
V

. �A1�

Since it is the local minima, for given N=N↑+N↓ we have
that

��Eg − �N�
�N↑

= �kF↑ − � + U
N↓
V

= 0,

��Eg − �N�
�N↓

= �kF↓ − � + U
N↑
V

= 0, �A2�

and we immediately get EkF↑
=�kF↑+Un↓=�kF↓+Un↑=EkF↓

=�F, with �=�F, for T=0.

2. Deriving Uc from Stoner criterion

The density of states is defined as D���= �1 /V��dN	 /d��
in the paramagnetic phase, where � is the one-particle energy
and N	��� is the number of states for each spin direction
whose energy is smaller or equal than �. For each spin pro-
jection, we have N	 /V=kF

3 / �6�2�, while from ��k�
= ��2 /2m�k2 we have that k= ��2m /�2���1/2. Thus
�N	��� /V�= �1 /6�2���2m /�2���3/2 and

D��� =
1

V

dN	���
d�

=
3

2

1

6�2�2m

�2 �3/2
�� =

3

2�

N	

V
=

3

4�

N

V
.

�A3�

The difference between the up and down single particle
energies Ek↑ and Ek↓ defines the self-consistent magnetic
field �=2U�M��� /V�. The phase transition occurs when �
becomes nonzero, leading to the equation 1= �2Uc /V�
���M /�����=0, which also gives the vanishing of the sus-
ceptibility denominator in the random phase approximation
�Stoner enhancement factor� �20�. One has then UcDF=1,
and therefore we find Uc=1 /DF= 4

3�F�V /N�.

3. Deriving Uc from Eqs. (9) and (10)

Using x=kF↑, y=kF↓, Eq. �9� can be rewritten as f�x ,y�
�x3+y3−a=0, with a=6�2�N /V��2kF

3 . Also, the quadratic
term from Eq. �10� that is for U
Uc responsible for non-
trivial magnetic solutions reads as g�x ,y ;U���x+y�
− �U /���x2+xy+y2�=0, with �=3�2��2 /m�� 3

2kFUc.
First, we show that for U
Uc �see Eq. �8��, curves f and

g have intersection in two points, symmetric with respect to
the y=x line, while for U=Uc they touch precisely in the
point �x ,y�= �kF ,kF�. In the coordinate system �x̄ , ȳ�, rotated
by the angle �=� /4 and translated by the vector �A ,0� from
the system �x ,y�, the curve g�x̄ , ȳ ;U�=0 becomes �34�

x̄2

A2 +
ȳ2

B2 = 1, �A4�

with A= ��2 /3��kF /U� and B=�2 /3�kF /U�—a real ellipse
with the main axes A=A�U� and B=B�U�. As the parameter

U increases from 0 �when A ,B→��, the main axes A and B
decrease and eventually the ellipse g touches the curve f in
the point �x̄ , ȳ�= �2A ,0�, which in the original coordinate
system correspond to the point �x ,y�= �kF ,kF�. In other
words, 2A=�2kF and U=Uc. Further increase of U beyond
Uc results in even smaller ellipses that intersect the curvef in
two symmetric points �note that the curve f is itself symmet-
ric along the y=x line�.

To show that for U
Uc the “balanced” solutions of Eqs.
�9� and �10� are indeed the physical ones, we calculate the
total ground state energy Eg of the system:

Eg = V�
E0↑

EF↑
�̃k↑D�Ek↑�dEk↑ + V�

E0↓

EF↓
Ek↓D�Ek↓�dEk↓

− VUn↑n↓. �A5�

Upon evaluating the above integrals, using M = �N↑−N↓� /2,
the total ground state energy reads

Eg =
V

20�2

�2

m
�3�2N

V
�5/3�1 +

2M

N
�5/3

+ �1 −
2M

N
�5/3�

+
UN2

4V
1 − �2M

N
�2� . �A6�

From the above expression, we see that for every value of the
coupling constant U, ��Eg /�M��U ,M =0�=0, while
��2Eg /�M2��U ,M =0� changes the sign from positive to
negative precisely in U=Uc. Thus we indeed have that for
U
Uc the “balanced” magnetic solutions with M �0 have
lower energy.

4. Deriving the maximum fidelity, i.e., the maximum
derivative dkF ÕdU for U=Uc, from Eqs. (9) and (10)

From df =0 and dg=0, we get ��f /�x= fx, dx /dU= ẋ, etc.�

fxẋ + fyẏ = 0,

gxẋ + gyẏ = − gu. �A7�

Solving it for ẋ and ẏ, we obtain

ẋ

ẏ
� =

gu

fxgy − fygx
 fy

− fx
� . �A8�

Finally,

ẋ

ẏ
� =

3

4

kf

DFV2

x + y

x − y

1

xy
 y2

− x2� . �A9�

Thus, in the limit U→Uc+ �note that g�x ,y ;U�=0 is valid
for U�Uc�, we have that x→kF+, y→kF− and ẋ→ +�,
ẏ→−� �or vice versa, for the xy solution branch�. In oth-
er words, dV�kF↓� /dU=4��kF↓�2�d�kF↓� /dU�=4�x2ẋ→ +�
and dV�kF↑� /dU→−�, or vice versa.

APPENDIX B

Below, the basic identities of the su�2� algebra of the elec-
tron spin operators leading to Eq. �15� are proven. We dis-
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cuss operators having a fixed momentum and drop the index
k for convenience.

1. S�̂ -Algebra identities

In general, operators defined by Ŝa= ĉ�
†S��

a ĉ�, where ĉ�
†

and ĉ� are either bosonic or fermionic operators and S��
a is a

matrix representation of a spin S algebra, i.e., satisfying
�Sa ,Sb���= i�abcS��

c , define a su�2� algebra. This is the case

of the electron spin operators defined by S�̂ =�̂†�	� /2��̂,

where �̂†= �ĉ↑
†ĉ↓

†� and 	� is the vector of Pauli matrices, and

given by Ŝz= 1
2 �n̂↑− n̂↓�, Ŝ+= ĉ↑

†ĉ↓ and Ŝ−= ĉ↓
†ĉ↑ �with Ŝ�

= Ŝx� iŜy�.
Using the anticommutation relations for the one-electron

modes ĉ	
† , one can easily obtain the following commutation

and anticommutation identities:

�Ŝz, Ŝ�� = � Ŝ�, �Ŝ+, Ŝ−� = 2Ŝz,

	Ŝz, Ŝ�
 = 0, 	Ŝ+, Ŝ−
 = Îs, �B1�

with Îs� n̂↑+ n̂↓−2n̂↑n̂↓= �2− n̂�n̂, n̂= n̂↑+ n̂↓, the projector
onto the subspace of the single-occupied states being an

identity operator for this algebra, since Îs
2= Îs, ÎsS�̂ =S�̂ Îs=S�̂ and

�S�̂�2= 3
4 Îs. One of the immediate consequences of the above

commutation relations is that 	Ŝx , Ŝy , Ŝz
 form a su�2� alge-
bra.

Further, we can obtain the traces Tr�Î�=4, Tr�Îs�=2 and

Tr�S�̂�=0� .

2. Evaluating eh�S�̂ and Tr†eh�S�̂
‡

For eh�S�̂, we have

eh�S�̂ = �
n=0

+�
1

n!
�h�S�̂�n = Î + �

n=1

+�
1

n!
�h�S�̂�n. �B2�

For �h�S�̂�2, we have

�h�S�̂�2 = 1

2
�h+Ŝ− + h−Ŝ+� + hzŜ

z�2

=
1

4
�h+�2�Ŝ−�2 +

1

4
�h−�2�Ŝ+�2 + hz

2�Ŝz�2

+
1

4
�h+h−�	Ŝ−, Ŝ+
 +

1

2
�hzh

+�	Ŝz, Ŝ−


+
1

2
�hzh

−�	Ŝz, Ŝ+
 . �B3�

Using the S�̂-algebra identities �B1�, we get

�h�S�̂�2 =
1

4
�hz�2Îs +

1

4
�h+h−�Îs =

1

4
�h�2Îs, �B4�

where �35� �h�2= �hz�2+h+h−�h2. Thus we obtain

eh�S�̂ = Î + �
n=1

+�
1

�2n�!�h

2
�2n

Îs + �
n=0

+�
1

�2n + 1�!�h

2
�2n

�h�S�̂�

= �Î − Îs� + �
n=0

+�
1

�2n�!�h

2
�2n� Îs

+ �
n=0

+�
1

�2n + 1�!�h

2
�2n+1�2

h
�h�S�̂�,

eh�S�̂ = �Î − Îs� + cosh�h

2
�Îs + 2 sinh�h

2
� �h�S�̂�

h
. �B5�

Using the trace formulas, we finally obtain

Tr�eh�S�̂� = 2�1 + cosh
h

2
� . �B6�

3. Evaluating e�n̂ and Tr†e�n̂
‡

Enlarging the su�2� algebra of the S�̂ operators to the op-
erator n̂= n̂↑+ n̂↓ it is useful to know its algebraic properties
and their relation to the other operators. We first evaluate n̂k.
Since n̂	

2 = n̂	 and n̂2= �n̂↑+ n̂↓�2= n̂+2n̂↑n̂↓ we find that n̂3=
−2n̂+3n̂2 and in general n̂k=−akn̂+bkn̂

2, where ak and bk
satisfy the recurrence equations ak+1=2bk and bk+1=3bk−ak,
leading to n̂k=−�2k−1−2�n̂+ �2k−1−1�n̂2. The exponential e�n̂

is given by

e�n̂ = Î − � e2�

2
− 2e� +

3

2
�n̂ + � e2�

2
− e� +

1

2
�n̂2

= Î + un̂ + vn̂2, �B7�

which can be easily verified since n̂= n̂↑+ n̂↓ can only take the
values n=0, 1, and 2.

Using the obvious trace relations Tr�n̂�=4 and Tr�n̂2�=6,
we also get Tr�e�n̂�=4+4u+6v, or

Tr�e�n̂� = �e� + 1�2. �B8�

The number operator commutes with the S�̂ operators, and

one has n̂Îs= Îsn̂= Îs and n̂S�̂ =S�̂ n̂=S�̂ . Finally, one obtains

Tr�e��n̂+h�S�̂�� = �1 + e�+h/2��1 + e�−h/2�

= 2e��cosh � + cosh
h

2
� . �B9�

APPENDIX C

In the following, we obtain the basic formulas for the

su�2� algebra of the Nambu operators T�̂ used in evaluating
Eq. �26� for the fidelity between two states of a BCS super-
conductor in thermodynamical equilibrium.
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1. T�̂ -Algebra identities

We now consider the operators defined by T�̂ = �̂†�	� /2��̂,

where �̂†= �ĉ↑
†ĉ↓� and 	� is the vector of Pauli matrices, and

given by T̂ z= 1
2 �n̂↑+ n̂↓−1�, T̂ += ĉ↑

†ĉ↓
†, and T̂ −= ĉ↓ĉ↑ �with

T̂ �= T̂x� iT̂y�. These operators T̂a are of the form considered
before, since the fermion anticommutation relations are in-
variant under the electron-hole transformation, i.e., under the

interchange ĉ↔ ĉ†. Similarly to the previous case of the S�̂

algebra, we obtain the commutation and anticommutation re-
lations:

�T̂0,T̂�� = � T̂�, �T̂+,T̂−� = 2T̂0,

	T̂0,T̂�
 = 0, 	T̂+,T̂−
 = Ît, �C1�

with Ît�2n̂↑n̂↓− �n̂↑+ n̂↓�+1= �n−1�2, the projector onto the
subspace of the empty and doubly occupied states being an

identity operator for this algebra, since Ît
2= Ît, ÎtT�̂ =T�̂ Ît=T�̂ and

�T�̂ �2= 3
4 Ît. One of the immediate consequences of the above

commutation relations is that 	T̂0 , T̂+ , T̂−
 form a su�2� alge-
bra. Further, simple algebra gives

Tr�T�̂ � = 0, Tr�Ît� = 2. �C2�

Note that in the above definition of �̂†, the operators ĉ↑
† and

ĉ↓ have the opposite momenta, k and −k, respectively. Had
the momenta been defined to be the same, the two sets of

operators S�̂ and T�̂ would commute with each other, i.e.,

�Ŝa , T̂b�=0. Also, one would have Îs+ Ît= Î.

2. Evaluating ea�T�̂ and Tr†ea�T�̂
‡

For ea�T�̂, we have

ea�T�̂ = �
n=0

+�
1

n!
�a�T�̂ �n = Î + �

n=1

+�
1

n!
�a�T�̂ �n. �C3�

Similarly to the previous case, for �a�T�̂ �2, we have

�a�T�̂ �2 = azT̂
0 +

1

2
�a+T̂− + a−T̂+��2

=
1

4
�a�2Ît, �C4�

where �a�2= �az�2+a+a−�a2. Thus we obtain �Ẑt= Î− Ît�:

ea�T�̂ = Î + �
n=1

+�
1

�2n�!�a

2
�2n

Ît + �
n=0

+�
1

�2n + 1�!�a

2
�2n

�a�T�̂ �

= �Î − Ît� + �
n=0

+�
1

�2n�!�a

2
�2n� Ît

+ �
n=0

+�
1

�2n + 1�!�a

2
�2n+1�2

a
�a�T�̂ �,

ea�T�̂ = Ẑt + cosh�a

2
�Ît + 2 sinh�a

2
� �a�T�̂ �

a
. �C5�

Using the trace formulas �C2�, we finally obtain

Tr�ea�T�̂� = 2�1 + cosh
a

2
� . �C6�

3. Evaluating e2c�T�̂ =e„a�Õ2…T
�̂
eb�T�̂e„a�Õ2…T

�̂
and Tr†ec�T�̂

‡

From the above formula �C6� and the known trigonomet-
ric relation �cosh�� /2��2= 1

2 �1+cosh ��, we have that

Tr�ec�T�̂�=2�1+cosh�c /2��=2�1+�1
2 �1+cosh c��. Thus, by

evaluating e2c�T�̂, we obtain the result for cosh c and therefore

Tr�ec�T�̂�. First, we obtain the general expression for ea�T�̂eb�T�̂.

Using the result �C5� for ea�T�̂ �and analogously for eb�T�̂�, we
get

ea�T�̂eb�T�̂ = Ẑt + �cosh
a

2
cosh

b

2
�Ît + 2�cosh

a

2
sinh

b

2
�b�

b

+ �sinh
a

2
cosh

b

2

a�

a
��T�̂ + 4�sinh

a

2
sinh

b

2
�a�T�̂

a

b�T�̂

b
.

�C7�

In deriving the above expression, we have used the above
identities �C2�. As in Eq. �C4�, using Eq. �C1� we obtain

�a�T�̂ ��b�T�̂ � =
1

4
��a�b��Ît + 2i�a� � b��T�̂ � . �C8�

Therefore, we have

ea�T�̂eb�T�̂ = Ẑt + �cosh
a

2
cosh

b

2
� + �sinh

a

2
sinh

b

2
� �a�b��

ab
� Ît

+ 2�sinh
a

2
cosh

b

2
�a�

a
+ �cosh

a

2
sinh

b

2
�b�

b

+ i
�a� � b��

ab
�T�̂ . �C9�

Applying the above result twice, we finally obtain the ex-

pression for e2c�T�̂:

e2c�T�̂ = e�a�/2�T�̂eb�T�̂e�a�/2�T�̂ = Ẑt + �cosh
a

2
cosh

b

2
�

+ �sinh
a

2
sinh

b

2
� �a�b��

ab
� Ît + �sinh

a

2
cosh

b

2
�a�

a

+ 2�sinh
b

2
�2b�

b
+ �cosh

a

2
− 1��sinh

b

2
� �a�b��a�

a2b
�T�̂ .

�C10�
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Comparing the above result with the expression �C5�, we
eventually end up with the expression for cosh c:

cosh c = �cosh
a

2
cosh

b

2
� + �sinh

a

2
sinh

b

2
� �a�b��

ab

�C11�

which reduces to Eq. �27� for particular values of a�k

= h̃
�

k�qa� and b�k= h̃
�

k�qb�.

APPENDIX D

In this appendix we prove that in the case of mutually
noncommuting Hamiltonians a relation analogous to Eq. �18�
holds between C, given by Eq. �29�, and the susceptibility �.
As in the commuting case, for simplicity, we consider a

Hamiltonian Ĥ= Ĥ0−hŜ with the symmetry-breaking term Ŝ,
and h=h�q�. Note that, in this case, the two terms in the

Hamiltonian do not commute with each other, �Ĥ0 , Ŝ��0.
Thus we have the following imaginary time Dyson expan-
sion around the point h=0 �36�:

e−��Ĥ0−hŜ� � �e−�Ĥ0 + h�
0

�

d� e−�Ĥ0Ŝ���

+ h2�
0

�

d��
0

�

d�1e−�Ĥ0Ŝ���Ŝ��1�� , �D1�

with Ŝ���=e�Ĥ0Ŝe−�Ĥ0. From the above equation, we obtain

the expressions for the magnetization M = �Ŝ� and the suscep-
tibility �=�M /�h given by derivatives of the partition func-
tion Z. First, the magnetization can be expressed as (using
the commutativity between the partial derivative and the
trace, �� /�h�Tr�·�=Tr�� /�h��·�)

M =
1

�

� ln Z

�h
=

1

�

1

Z

�Z

�h
=

1

�

1

Z

�

�h
Tr�e−�Ĥ�

=
1

�

1

Z
�

0

�

d� Tr�e−�Ĥ0e�Ĥ0Ŝe−�Ĥ0�

=
1

�
�

0

�

d� Tr e−�Ĥ0

Z
Ŝ� = �Ŝ� . �D2�

The susceptibility is then

� =
�M

�h
=

�

�h
� 1

�

1

Z

�Z

�h
� =

1

�

1

Z

�2Z

�h2 −
1

�

1

Z2� �Z

�h
�2

. �D3�

The second term is obviously equal to �M2=��Ŝ�2, while the
first term can be transformed as follows �37�:

1

�

1

Z
� �2Z

�h2�
0

=
1

�

1

Z� �

�h
�

0

�

d� Tr�e−�ĤŜ��
0

=
1

Z
Tr� �e−�Ĥ

�h
�

0
Ŝ� =

1

Z
�

0

�

d� Tr�e−�Ĥ0Ŝ���Ŝ�

= �
0

�

d��Ŝ���Ŝ� . �D4�

Thus the susceptibility is given by �=�0
�d���Ŝ���Ŝ�− �Ŝ�2�.

From this, the Taylor expansion for Z,

Z � Z0�1 + �Mh +
1

2
�2M2h2 +

1

2
��h2� , �D5�

is identical to the one obtained for the case of mutually com-
muting Hamiltonians, and therefore a relation analog to Eq.
�18� holds between C and the susceptibility �.
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